矩阵运算
a=[4,-1,1;-1,4.26,2.75;1,2.75,3.5];
sum(a.*a,2)
字符串
s1 = 'upon';
s2 = {'Once','upon';
'a','time'};
any(strcmp(s1,s2));
index = find(strcmp(s1,s2));
%改进平方根法
tic
%其中a为对称正定矩阵
a=[5,-4,1,0;-4,6,-4,1;1,-4,6,-4;0,1,-4,5];
b=[2,-1,-1,2];
%a=[4,-1,1;-1,4.26,2.75;1,2.75,3.5];
%b=[8,4,10];
n=size(a,1);
d(1)=a(1,1);
for i=2:n
for j=1:i-1
sum1=0;
for k=1:j-1
sum1=sum1+t(i,k)*l(j,k);
end
t(i,j)=a(i,j)-sum1;
l(i,j)=t(i,j)/d(j);
end
sum2=0;
for k=1:i-1
sum2=sum2+t(i,k)*l(i,k);
end
d(i)=a(i,i)-sum2;
end
for i=1:n
l(i,i)=1;
end
y1(1)=b(1);
for i=2:n
sum3=0;
for k=1:i-1
sum3=sum3+l(i,k)*y1(k);
end
y1(i)=b(i)-sum3;
end
y1
x1(n)=y1(n)/d(n);
for i=n-1:-1:1
sum4=0;
for k=i+1:n
sum4=sum4+l(k,i)*x1(k);
end
x1(i)=y1(i)/d(i)-sum4;
end
x1
toc
function y=Euler1(a,b,N,af);
h=(b-a)/N;
x(1)=a;
y(1)=af;
yg(1)=af;
yh(1)=af;
jqj(1)=af;
for i=2:N+1
y(i)=y(i-1)+h*f(x(i-1),y(i-1));
yh(i)=yh(i-1)+(h/4)*(f(x(i-1),yh(i-1))+3*f(x(i-1)+2*h/3,yh(i-1)+2*h*f(x(i-1),yh(i-1))/3));
x(i)=a+(i-1)*h;
yg(i)=yg(i-1)+h*(f(x(i-1),y(i-1))+f(x(i),y(i)+h*f(x(i-1),y(i-1))))/2;
jqj(i)=x(i)+exp((-x(i)));
end
[x',y',yg',yh',jqj']
er=sum((y-jqj).^2)
erg=sum((yg-jqj).^2)
erh=sum((yh-jqj).^2)
plot(x,y,'r',x,yg','b',x,yh','k',x,jqj,'g');
legend('Euler法','改进Euler法','Heun法','精确解');